20. Convergence of Positive Series
d.2. The Limit Comparison Test - Extreme Cases
Suppose \(\displaystyle \sum_{n=n_o}^\infty a_n\) and \(\displaystyle \sum_{n=n_o}^\infty b_n\) are positive series and \(\displaystyle \lim_{n\to\infty}\dfrac{a_n}{b_n}=L\).
- If \(0 \lt L \lt \infty\), then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is convergent if and only if \(\displaystyle \sum_{n=n_o}^\infty b_n\) is convergent.
- If \(L=0\) and \(\displaystyle \sum_{n=n_o}^\infty b_n\) is convergent, then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is also convergent.
- If \(L=\infty\) and \(\displaystyle \sum_{n=n_o}^\infty b_n\) is divergent, then \(\displaystyle \sum_{n=n_o}^\infty a_n\) is also divergent.
Cases (2) and (3) are called the extreme cases,
and arise very rarely.
If \(L=0\) and \(\displaystyle \sum_{n=n_o}^\infty b_n\) is divergent, or
\(L=\infty\) and \(\displaystyle \sum_{n=n_o}^\infty b_n\) is convergent, the
Limit Comparison Test FAILS.
We now look at the extreme cases, \(L=0\) and \(L=\infty\) which are less common.
If \(L=0\), then \(\displaystyle \lim_{n\to\infty}\dfrac{a_n}{b_n}=0\) says the \(a_n\) are much smaller than the \(b_n\). So if \(\displaystyle \sum_{n=n_o}^\infty b_n\) converges, then \(\displaystyle \sum_{n=n_o}^\infty a_n\) also converges.
Similarly, if \(L=\infty\), then \(\displaystyle \lim_{n\to\infty}\dfrac{a_n}{b_n}=\infty\) says the \(a_n\) are much bigger than the \(b_n\). So if \(\displaystyle \sum_{n=n_o}^\infty b_n\) diverges, then \(\displaystyle \sum_{n=n_o}^\infty a_n\) also diverges.
Determine if \(\displaystyle \sum_{n=2}^\infty \dfrac{\ln n}{n^2}\) is convergent or divergent.
We try to compare to \(\displaystyle \sum_{n=2}^\infty \dfrac{1}{n^2}\) which is a convergent \(p\)-series since \(p=2 \gt 1\). Thus, we take \(a_n=\dfrac{\ln n}{n^2}\) and \(b_n=\dfrac{1}{n^2}\). We compute \[\begin{aligned} L&=\lim_{n\to\infty}\dfrac{a_n}{b_n} =\lim_{n\to\infty}\dfrac{\ln n}{n^2}\cdot\dfrac{n^2}{1} \\ &=\lim_{n\to\infty}\ln n=\infty \end{aligned}\] Since \(L=\infty\) but \(\displaystyle \sum_{n=2}^\infty b_n=\sum_{n=2}^\infty \dfrac{1}{n^2}\) is convergent, the Limit Comparison Test FAILS! Back to the drawing board.
This time we compare to \(\displaystyle \sum_{n=2}^\infty \dfrac{1}{n^{3/2}}\) which is also a convergent \(p\)-series since \(p=\dfrac{3}{2}>1\).
We have \(\begin{aligned}\dfrac{\ln n}{n^2} \gt \dfrac{1}{n^2}\end{aligned}\) but to show convergence we need \(\dfrac{\ln n}{n^2} \lt b_n\). So we make \(b_n\) slightly bigger by making the power slightly smaller (\(\begin{aligned}\dfrac{3}{2}\end{aligned}\) is slightly smaller than \(2\)) while still keeping the series convergent.
Thus, we take \(a_n=\dfrac{\ln n}{n^2}\) and \(b_n=\dfrac{1}{n^{3/2}}\). Using l'Hopital's Rule, we compute \[\begin{aligned} L&=\lim_{n\to\infty}\dfrac{a_n}{b_n} =\lim_{n\to\infty}\dfrac{\ln n}{n^2}\cdot\dfrac{n^{3/2}}{1}\\ &=\lim_{n\to\infty}\dfrac{\ln n}{n^{1/2}} \;\overset{\text{l'H}}{=}\; \lim_{n\to\infty}\dfrac{1/n}{\dfrac{1}{2}n^{-1/2}} \\ &=\lim_{n\to\infty}\dfrac{2n^{1/2}}{n} =\lim_{n\to\infty}\dfrac{2}{n^{1/2}}=0 \end{aligned}\] Since \(L=0\) and \(\displaystyle \sum_{n=2}^\infty b_n =\sum_{n=2}^\infty \dfrac{1}{n^{3/2}}\) is convergent, the Limit Comparison Test says \(\displaystyle \sum_{n=2}^\infty a_n =\sum_{n=2}^\infty \dfrac{\ln n}{n^2}\) is also convergent.
Determine if \(\displaystyle \sum_{n=2}^\infty \dfrac{1}{\ln n}\) is convergent or divergent.
Let \(\displaystyle b_n=\sum_{n=2}^\infty \dfrac{1}{n}\).
\(\displaystyle \sum_{n=2}^\infty \dfrac{1}{\ln n}\) is divergent.
We compare to \(\displaystyle \sum_{n=2}^\infty \dfrac{1}{n}\) which is a harmonic series and hence divergent. We take \(a_n=\dfrac{1}{\ln n}\) and \(b_n=\dfrac{1}{n}\). Using l'Hopital's Rule, we compute \[\begin{aligned} L&=\lim_{n\to\infty}\dfrac{a_n}{b_n} =\lim_{n\to\infty}\dfrac{1}{\ln n}\dfrac{n}{1} =\lim_{n\to\infty}\dfrac{n}{\ln n} \\ &\overset{\text{l'H}}{=}\;\lim_{n\to\infty}\dfrac{1}{1/n} =\lim_{n\to\infty}n=\infty \end{aligned}\] Since \(L=\infty\) and \(\displaystyle \sum_{n=2}^\infty b_n =\sum_{n=2}^\infty\dfrac{1}{n}\) diverges, we conclude \(\displaystyle \sum_{n=2}^\infty a_n =\sum_{n=2}^\infty \dfrac{1}{\ln n}\) also diverges.
Notice the Simple Comparison Test would also work here.
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum